A note on f^{+}-chromatic spanning trees in f-properly edge-colored graphs

Kazuhiro Suzuki*

Abstract

A rainbow tree is an edge-colored tree whose all edges are colored with different colors. An f-chromatic tree is an edge-colored tree such that each color c appears on at most $f(c)$ edges. A properly edge-colored graph is an edge-colored graph whose any adjacent edges are colored with different colors. An f-properly edge-colored graph is an edge-colored graph such that each vertex is incident with at most $f(c)$ edges colored with c for any color c.

In this paper, we prove that every f-properly edge-colored graph G has k edge-disjoint f^{+}-chromatic spanning trees under the assumption that for any proper edge-coloring of G, there exist k edge-disjoint rainbow spanning trees in the properly edge-colored graph G. Here f^{+}is a mapping such that $f^{+}(c)=f(c)+1$ for any color c. By using this theorem, we show that every f properly edge-colored complete graph of order $n(n \geq 5)$ has two edge-disjoint f^{+}-chromatic spanning trees.

We consider finite undirected graphs without loops or multiple edges. For a graph G, let $V(G)$ and $E(G)$ denote its vertex and edge sets, respectively. For a graph G and a set \mathcal{C} of colors, let color be a mapping from $E(G)$ to \mathcal{C}. Then, the mapping color is called an edge-coloring of G, and the triple (G, \mathcal{C}, color) is called an edge-colored graph. We often abbreviate an edge-colored graph (G, \mathcal{C}, color $)$ as G. An edge-coloring of a graph is said to be proper if any adjacent edges are colored with different colors. An edge-colored graph is said to be properly edge-colored if its edge-coloring is proper. For a graph $G, \Delta(G)$ denotes the maximum degree of G, and $\chi^{\prime}(G)$ denotes the edge chromatic number (chromatic index) of G, namely, the minimum positive integer k such that there exists a proper edge-coloring of G using

[^0]k colors. Note that $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$ by Vizing's theorem [4]. For an edgecolored graph $(G, \mathcal{C}$, color $)$, let $E_{c}(G)$ denote the set of all the edges of G colored with $c \in \mathcal{C}$, and let $G_{c}:=\left(V(G), E_{c}(G)\right)$. An edge-colored graph $(G, \mathcal{C}$, color $)$ is said to be rainbow ${ }^{1}$ if no two edges of G have the same color, that is, $\operatorname{color}(e) \neq \operatorname{color}\left(e^{\prime}\right)$ for any two distinct edges e and e^{\prime} of G.

Brualdi and Hollingsworth [1] conjectured the existence of n edge-disjoint rainbow spanning trees in some type of properly edge-colored complete graphs (Fig. 1).

Conjecture 1 (Brualdi and Hollingsworth [1]). Let (G, \mathcal{C}, color) be an edge-colored complete graph of order $2 n(n \geq 3)$. If each color induces a 1 -factor of G, that is, $E_{c}(G)$ is a perfect matching of G for any color $c \in \mathcal{C}$, then G can be decomposed into n edge-disjoint rainbow spanning trees.

Fig. 1: An example for $n=3$ of the conjecture by Brualdi and Hollingsworth.

Kaneko et al. [2] conjectured a stronger statement than Conjecture 1 and proved the existence of two edge-disjoint rainbow spanning trees.

Conjecture 2 (Kaneko, Kano, and Suzuki [2]). Every properly edge-colored complete graph of order $n(n \geq 5)$ has $\lfloor n / 2\rfloor$ edge-disjoint rainbow spanning trees.

Theorem 3 (Kaneko, Kano, and Suzuki [2]). Every properly edge-colored complete graph of order $n(n \geq 5)$ has two edge-disjoint rainbow spanning trees.

The term "rainbow" means that each color appears on at most one edge. Suzuki [3] generalized "one" to a mapping f from a given color set \mathcal{C} to the set of nonnegative integers, and defined f-chromatic graphs as follows.

Definition 4 (Suzuki [3]). Let (G, \mathcal{C}, color) be an edge-colored graph. Let f be a mapping from \mathcal{C} to the set of non-negative integers. Then (G, \mathcal{C}, color $)$ is said to be f-chromatic if $\left|E_{c}(G)\right| \leq f(c)$ for any color $c \in \mathcal{C}$.

Suzuki [3] presented a necessary and sufficient condition for an edge-colored graph to have an f-chromatic spanning forest with exactly m components.

[^1]In this paper, first, we prove the following theorem, which shows a relationship between the existence of rainbow spanning trees and the existence of some type of f-chromatic spanning trees.

Theorem 5. Let (G, \mathcal{C}, color) be an edge-colored graph. Let f be a mapping defined as $f(c):=\chi^{\prime}\left(G_{c}\right)$ for each color $c \in \mathcal{C}$. Suppose that for any proper edge-coloring color' with color set \mathcal{C}^{\prime} of G, the properly edge-colored graph (G, \mathcal{C}^{\prime}, color') has k edgedisjoint rainbow spanning trees. Then, (G, \mathcal{C}, color $)$ has k edge-disjoint f-chromatic spanning trees.

Proof. The outline of our proof is as follows. We recolor all the edges of G in such a way that for each color $c \in \mathcal{C}$, we properly color the edges of G_{c} with $\chi^{\prime}\left(G_{c}\right)$ new colors. Then, the recolored graph is properly edge-colored. By our assumption, the recolored graph has k edge-disjoint rainbow spanning trees. By restoring the colors of the trees, we have k edge-disjoint f-chromatic spanning trees of $(G, \mathcal{C}$, color $)$.

More strictly, for each color $c \in \mathcal{C}$, let $(c, 1),(c, 2), \ldots,\left(c, \chi^{\prime}\left(G_{c}\right)\right)$ be new $\chi^{\prime}\left(G_{c}\right)$ colors, let \mathcal{C}_{c} be the set of these colors, and let color $_{c}$ be a proper edge-coloring of G_{c} with colors in \mathcal{C}_{c}. Let $\mathcal{C}^{\prime}:=\bigcup_{c \in \mathcal{C}} \mathcal{C}_{c}$ and color $:=\bigcup_{c \in \mathcal{C}}$ color r_{c}. Then, color' be the new edge-coloring with color set \mathcal{C}^{\prime} of G such that $\operatorname{color}^{\prime}(e)=\operatorname{color}_{\text {color }(e)}(e)$ for each edge e of G. Since every coloring color ${ }_{c}$ is proper and $\bigcap_{c \in \mathcal{C}} \mathcal{C}_{c}=\emptyset$, the edge-colored graph (G, \mathcal{C}^{\prime}, color $^{\prime}$) is a properly edge-colored.

By our assumption, $\left(G, \mathcal{C}^{\prime}\right.$, color $\left.^{\prime}\right)$ has k edge-disjoint rainbow spanning trees $\left(T_{i}, \mathcal{C}^{\prime}\right.$, color $\left._{i}^{\prime}\right)(i=1,2, \ldots, k)$, where color ${ }_{i}^{\prime}=\left\{\left(e, \operatorname{color}^{\prime}(e)\right) \mid e \in E\left(T_{i}\right)\right\} \subseteq$ color $^{\prime}$. For each $\left(T_{i}, \mathcal{C}^{\prime}\right.$, color $\left._{i}^{\prime}\right)$, we let color $i:=\left\{(e, \operatorname{color}(e)) \mid e \in E\left(T_{i}\right)\right\} \subseteq$ color and we consider the edge-colored tree $\left(T_{i}, \mathcal{C}\right.$, color $\left._{i}\right)$. For any color $c \in \mathcal{C}$, each $\left(T_{i}, \mathcal{C}^{\prime}\right.$, color $\left._{i}^{\prime}\right)$ has at most $\left|\mathcal{C}_{c}\right|=\chi^{\prime}\left(G_{c}\right)$ edges whose color is (c, j) for some $j \in\left\{1,2, \ldots, \chi^{\prime}\left(G_{c}\right)\right\}$, since $\left(T_{i}, \mathcal{C}^{\prime}\right.$, color $\left._{i}^{\prime}\right)$ is rainbow. By the definition of $\operatorname{color}^{\prime}, \operatorname{color}^{\prime}(e)=(c, j)$ for some $j \in\left\{1,2, \ldots, \chi^{\prime}\left(G_{c}\right)\right\}$ if and only if color $(e)=c$. Thus, $\left(T_{i}, \mathcal{C}\right.$, color $\left._{i}\right)$ has at most $\chi^{\prime}\left(G_{c}\right)=f(c)$ edges whose color is c, which implies $\left(T_{i}, \mathcal{C}\right.$, color $\left._{i}\right)$ is f-chromatic. Therefore, G has k edge-disjoint f-chromatic spanning trees.

A properly edge-colored graph (G, \mathcal{C}, color $)$ is an edge-colored graph such that $\Delta\left(G_{c}\right) \leq 1$ for any color $c \in \mathcal{C}$. To generalize this fact, we define an f-properly edge-colored graph as follows.

Definition 6. Let f be a mapping from a color set \mathcal{C} to the set of non-negative integers. An edge-colored graph (G, \mathcal{C}, color) is said to be f-properly edge-colored if $\Delta\left(G_{c}\right) \leq f(c)$ for any color $c \in \mathcal{C}$. Then, the edge-coloring color is called an f-proper edge-coloring of G.

Given an edge-colored graph $(G, \mathcal{C}$, color $)$ and a mapping f from \mathcal{C} to the set of non-negative integers, we let $f^{+}(c):=f(c)+1$ for each color $c \in \mathcal{C}$. We next prove the following theorem by using Theorem 5 and Vizing's theorem [4].

Theorem 7. Let (G, \mathcal{C}, color) be an f-properly edge-colored graph. Suppose that for any proper edge-coloring color' with color set \mathcal{C}^{\prime} of G, the properly edge-colored graph (G, \mathcal{C}^{\prime}, color $\left.^{\prime}\right)$ has k edge-disjoint rainbow spanning trees. Then, $(G, \mathcal{C}$, color $)$ has k edge-disjoint f^{+}-chromatic spanning trees.

Proof. Let g be a mapping defined as $g(c):=\chi^{\prime}\left(G_{c}\right)$ for each color $c \in \mathcal{C}$. By Theorem $5,(G, \mathcal{C}$, color $)$ has k edge-disjoint g-chromatic spanning trees $T_{1}, T_{2}, \ldots, T_{k}$. Since (G, \mathcal{C}, color) is f-properly edge-colored, $\Delta\left(G_{c}\right) \leq f(c)$ for any color $c \in \mathcal{C}$. Thus, by Vizing's theorem, $g(c)=\chi^{\prime}\left(G_{c}\right) \leq \Delta\left(G_{c}\right)+1 \leq f(c)+1 \leq f^{+}(c)$ for each color $c \in \mathcal{C}$. Thus, a g-chromatic spanning tree of $(G, \mathcal{C}$, color $)$ is an f^{+}-chromatic spanning tree of (G, \mathcal{C}, color $)$. Hence, $T_{1}, T_{2}, \ldots, T_{k}$ are desired trees.

By using Conjecture 2, and Theorem 3, we have the following corollaries of Theorem 7.

Corollary 8. If Conjecture 2 holds, then every f-properly edge-colored complete graph of order $n(n \geq 5)$ has $\lfloor n / 2\rfloor$ edge-disjoint f^{+}-chromatic spanning trees.
Corollary 9. Every f-properly edge-colored complete graph of order $n(n \geq 5)$ has two edge-disjoint f^{+}-chromatic spanning trees.

We conclude this note with the following stronger conjecture, which claims the existence of f-chromatic spanning trees instead of f^{+}-chromatic spanning trees.

Conjecture 10. Every f-properly edge-colored complete graph of order $n(n \geq 5)$ has $\lfloor n / 2\rfloor$ edge-disjoint f-chromatic spanning trees.

Acknowledgments The author would like to thank the referees for carefully reading the manuscript and providing valuable comments.

References

[1] Brualdi, Richard A.; Hollingsworth, Susan; Multicolored Trees in Complete Graphs. J. Combin. Theory Ser. B 68 (1996), 310-313.
[2] Kaneko, Atsushi; Kano, Mikio; Suzuki, Kazuhiro; Two Edge-Disjoint Heterochromatic Spanning Trees in Colored Complete Graphs. Matimyás Mat. 29 (2006), 49-51.
[3] Suzuki, Kazuhiro; A Generalization of Heterochromatic Graphs and f Chromatic Spanning Forests. Graphs Combin. 29 (2013), 715-727.
[4] Vizing, V. G.; On an estimate of the chromatic class of a p-graph. Diskret. Analiz (1964), 25-30.

[^0]: MSC2010: 05C05(Trees.), 05C15(Coloring of graphs and hypergraphs.), 05C70(Factorization, matching, partitioning, covering and packing).
 *Department of Information Science, Kochi University, Japan. kazuhiro@tutetuti.jp.

[^1]: ${ }^{1} \mathrm{~A}$ rainbow graph is also said to be heterochromatic, multicolored, totally multicolored, polychromatic, or colorful, and so on.

