On the existence of a rotational closed chain

Kazushi Komatsu *
Jun Yagi ${ }^{\dagger}$

Abstract

The set of closed chains is called the configuration space of the closed chains. Let $M_{n}^{n}(\theta)$ be the configuration space of equilateral and equiangular closed chains with the bond angle θ and n-vertices, and $M_{n}^{n-2}(\theta)$ the configuration space of equilateral closed chains with n-vertices whose $n-2$ bond angles are the same θ except for successive two angles. In this paper, we study the condition of n for which $M_{n}^{n}\left(\frac{\pi}{2}\right)$ or $M_{n}^{n-2}\left(\cos ^{-1}\left(-\frac{1}{3}\right)\right)$ has a rotational closed chain. This results give a geometrical approach for the study of the topology of $M_{n}^{n}\left(\frac{\pi}{2}\right)$ or $M_{n}^{n-2}\left(\cos ^{-1}\left(-\frac{1}{3}\right)\right)$.

1 Introduction and Main Theorem

A closed chain is defined to be a spatial graph in \mathbf{R}^{3} consisting of vertices $v_{0}, v_{1}, \ldots, v_{n-1}$ and bonds $\beta_{0}, \beta_{1}, \beta_{2}, \ldots, \beta_{n-1}$, where β_{i} connects v_{i} with v_{i-1}, and β_{0} is the edge connecting v_{0} with v_{n-1}. Let $\boldsymbol{\beta}_{i}$ denotes the bond vector $v_{i}-v_{i-1}$, where $i=1,2, \ldots, n$ and $v_{n}=v_{0}$. For a closed chain, we prepare the following definitions: the bond length for the bond β_{i} is defined to be the distance between v_{i} and v_{i-1}, a bond angle is defined to be the angle between two adjacent bonds, the dihedral angle for three bond vectors $\boldsymbol{\beta}_{i}, \boldsymbol{\beta}_{i+1}$ and $\boldsymbol{\beta}_{i+2}$ is defined to be the angle between two planes; one is spanned by the two bond vectors $\boldsymbol{\beta}_{i}$ and $\boldsymbol{\beta}_{i+1}$ and the other is spanned by the two bond vectors $\boldsymbol{\beta}_{i+1}$ and $\boldsymbol{\beta}_{i+2}$. In particular, dihedral angles have important roles to determine closed chains. A closed chain is called a rotational closed chain if it has a rotatable bond, that is the dihedral angles of the bond can take any value. In this paper, we impose the following condition for a closed chain :

Assumption 1. We fix θ with $0 \leq \theta<\pi$. Assume that all bond lengths of a closed chain with n-vertices are 1 . The closed chain satisfies either of the following conditions (1)-(3):

$$
\begin{array}{ll}
\text { (1) }\left\langle-\boldsymbol{\beta}_{j}, \boldsymbol{\beta}_{j+1}\right\rangle=\cos \theta & (j=0,1,2, \ldots, n-1) \\
\text { (2) }\left\langle-\boldsymbol{\beta}_{j}, \boldsymbol{\beta}_{j+1}\right\rangle=\cos \theta & (j=1,2, \ldots, n-1)
\end{array}
$$

[^0]$$
\text { (3) }\left\langle-\boldsymbol{\beta}_{j}, \boldsymbol{\beta}_{j+1}\right\rangle=\cos \theta \quad(j=1,2, \ldots, n-2)
$$

Here, $\boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{1}, \ldots, \boldsymbol{\beta}_{n-1}$ denote bond vectors of the closed chain, and $\boldsymbol{\beta}_{n}=\boldsymbol{\beta}_{0}$.
Throughout this paper, we fix three vertices v_{1}, v_{2} and v_{3} to $v_{1}=(0,0,0)$, $v_{2}=(1,0,0)$ and $v_{3}=(1-\cos \theta, \sin \theta, 0)$ respectively. The set of closed chains is called the configuration space of the closed chains.

Notation. If the closed chain satisfies the condition (1), the closed chain is equilateral and equiangular with the bond angle θ. In generally, the configuration space of such closed chains is denoted by $M_{n}^{n}(\theta)$.

If the closed chain satisfies the condition (2), the closed chain is equilateral whose $n-1$ bond angles are θ except for $\angle v_{1} v_{0} v_{n-1}$. The configuration space of such closed chains is denoted by $M_{n}^{n-1}(\theta)$.

If the closed chain satisfies the condition (3), the closed chain is equilateral whose $n-2$ bond angles are θ except for $\angle v_{1} v_{0} v_{n-1}$ and $\angle v_{0} v_{n-1} v_{n-2}$. The configuration space of such closed chains is denoted by $M_{n}^{n-2}(\theta)$.

Many researchers have studied the structure of the configuration space consisting of such closed chains. In [?], they considered closed chains in $M_{n}^{n-2}(\theta)$ as a mathematical model of cycroalkenes, and showed that the configuration space $M_{n}^{n-2}(\theta)$ is homeomorphic to S^{n-4}, when θ is the standard bond angle, and $n=5,6,7$. Here, if $n=5$ the standard bond angle is given by $\frac{7}{12} \pi$, and if $n \geq 6$ the standard bond angle is given by $\cos ^{-1}\left(-\frac{1}{3}\right)$. More generally, if the bond angle θ is sufficiently close to $\frac{n-2}{n} \pi$, the configuration space $M_{n}^{n-2}(\theta)$ is homeomorphic to S^{n-4}, for $n \geq 5([?, ?])$. Here, the bond angle of the n-regular polygon is $\frac{n-2}{n} \pi$. On the other hand, many researchers are also interested in the study of the topology of $M_{n}^{n}(\theta)$. When $n=6$ and 7 , the topological types of $M_{n}^{n}(\theta)$ are classified in [?] and [?] respectively, for generic θ.

The study of rotational closed chains in $M_{n}^{n}(\theta)\left(\right.$ resp. $\left.M_{n}^{n-2}(\theta)\right)$ is to relate the study of the topology of $M_{n}^{n}(\theta)$ (resp. $M_{n}^{n-2}(\theta)$), since the fundamental group of $M_{n}^{n}(\theta)$ (resp. $M_{n}^{n-2}(\theta)$) is non-trivial if $M_{n}^{n}(\theta)$ (resp. $M_{n}^{n-2}(\theta)$) has a rotational closed chain (see [?]). Recently, in [?], we studied reversibility of a polyhedral annulus of even isosceles right triangles. This result implies that there is a rotational equilateral and equiangular $2 n$-closed chain with the bond angle $\frac{\pi}{2}$, for $n \geq 2$. In this paper, we study the condition of n for which $M_{n}^{n}\left(\frac{\pi}{2}\right)$ or $M_{n}^{n-2}\left(\cos ^{-1}\left(-\frac{1}{3}\right)\right)$ has a rotational closed chain. Our Theorem is the following:

Theorem 2. (1) Assume that the fixed bond angle is $\cos ^{-1}\left(-\frac{1}{3}\right)$. When $n=$ $5,6,7, M_{n}^{n-2}(\theta)$ dose not have rotational closed chains. If $n \geq 8, M_{n}^{n-2}(\theta)$ has a rotational closed chain.
(2) Assume that the fixed bond angle is $\frac{\pi}{2}$. When $n=5,6,7, M_{n}^{n}(\theta)$ dose not have rotational closed chains. If $n \geq 8$ and $n \neq 9, M_{n}^{n}(\theta)$ has a rotational closed chain.

2 Proof of Theorem 2 (1)

In this section, we give a proof of Theorem 2 (1). Throughout this section, we assume $\theta=\cos ^{-1}\left(-\frac{1}{3}\right)$. Note that if a straight chain has a rotatable bond β_{i} $(1 \leq i \leq n)$, the three bond vectors $\boldsymbol{\beta}_{i-1}, \boldsymbol{\beta}_{i}$ and $\boldsymbol{\beta}_{i+1}$ of the straight chain form a planar local configuration as in Fig. 1, where $\beta_{n}=\beta_{0}$ and $\beta_{n+1}=\beta_{1}$.

Figure 1: A forbidden local configuration

However, if $n=5,6,7$, from Lemma 1 (2) stated in [?], any closed chain in $M_{n}^{n-2}(\theta)$ does not have local configurations as in Fig. 1. This implies that, when $n=5,6,7, M_{n}^{n-2}(\theta)$ dose not have rotational closed chains.

In what follows, for $n \geq 8$, we construct a rotational closed chain in $M_{n}^{n-2}(\theta)$ to show Theorem 2 (1). We refer to Theorem A and B stated in [?].

Lemma 3 ([?]). Let n is a positive integer with $n \geq 4$.
If n is odd, we have $M_{n}^{n-1}(\theta) \neq \varnothing$ if and only if $\theta \in\left[\frac{\pi}{n}, \frac{n-2}{n} \pi\right]$.
If n is even, we have $M_{n}^{n-1}(\theta) \neq \varnothing$ if and only if $\theta \in\left[0, \frac{n-2}{n} \pi\right]$
We fix a positive integer n with $n \geq 8$. From Lemma 3 , when $\theta=\cos ^{-1}\left(-\frac{1}{3}\right)$, we obtain $M_{n-2}^{n-3}(\theta) \neq \varnothing$. By attaching the parallel stacked two bonds to a closed chain in $M_{n-2}^{n-3}(\theta)$ as in Fig. 2, we get a rotational closed chain in $M_{n}^{n-2}(\theta)$. More precisely, we need to rename the bonds of the new rotational closed chain so that the rotational closed chain is contained in $M_{n}^{n-2}(\theta)$. We give an example of the case $n=8$ as in Fig. 3. The dihedral angles of a rotatable bond β_{2} can take any value.

Remark 4. Fix a positive integer n with $n \geq 5$. It is easy to see that for the case $n=5$ we have $M_{n-2}^{n-3} \neq \varnothing$ if and only if $\theta=\frac{\pi}{3}$. From Lemma 3, one can verify that if n is odd and $n \geq 7$, we have $M_{n-2}^{n-3}(\theta) \neq \varnothing$ if and only if $\theta \in\left[\frac{\pi}{n-2}, \frac{n-4}{n-2} \pi\right]$ and that if n is even and $n \geq 6$, we have $M_{n-2}^{n-3}(\theta) \neq \varnothing$ if and only if $\theta \in\left[0, \frac{n-4}{n-2} \pi\right]$. For such θ, by using the above method, we can construct a rotational closed chain in $M_{n}^{n-2}(\theta)$.
 in $M_{n}^{n-2}(\theta)$

Figure 3: The case of a rotational closed chain in $M_{8}^{6}(\theta)$

3 Proof of Theorem 2 (2)

In this section, we prove Theorem 2 (2). Throughout this section, we assume $\theta=\frac{\pi}{2}$. We begin the following Lemma.
Lemma 5. Assume that $n=5,6,7$. Any closed chain in $M_{n}^{n}(\theta)$ does not have the local configurations as in Fig. 4.

Figure 4: A forbidden local configuration

Proof. Assume that a closed chain in $M_{n}^{n}(\theta)$ has a local configuration as in Fig. 4 for $n=5,6,7$. Without loss of generality, we can assume that the three bonds β_{2}, β_{3} and β_{4} of the closed chain form the configuration as in Fig. 5 or 6.

Firstly, we consider the case of $n=5$. Then v_{0} and v_{4} are $(0, y, z)$ and $(2,1,0)$ respectively, where $y^{2}+z^{2}=1$ (see Fig. 5).

Then the distance between v_{0} and v_{4} is given by $\sqrt{2^{2}+(1-y)^{2}+z^{2}}$. From $\left\|\boldsymbol{\beta}_{0}\right\|=1$, we have the equation $\sqrt{2^{2}+(1-y)^{2}+z^{2}}=1$. However, we see

Figure 5: A forbidden local configuration when the case of $n=5$
$\sqrt{2^{2}+(1-y)^{2}+z^{2}} \geq \sqrt{2^{2}}=2>1$. This contradicts that a closed chain in $M_{5}^{5}(\theta)$ has a local configuration as in Fig. 4.

Secondly, we consider the case $n=6$. Then v_{0} and v_{5} are given by $\left(0, y_{1}, z_{1}\right)$ and $\left(2,1+y_{2}, z_{2}\right)$ respectively, where $y_{1}^{2}+z_{1}^{2}=1$ and $y_{2}^{2}+z_{2}^{2}=1$ (see Fig. 6).

Figure 6: A forbidden local configuration when the case of $n=6$ and $n=7$
So, the distance between v_{0} and v_{5} is $\sqrt{2^{2}+\left(1+y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$. Since $\left\|\boldsymbol{\beta}_{0}\right\|=1$, we see the equation $\sqrt{2^{2}+\left(1+y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}=1$. But, it is easy to see that $\sqrt{2^{2}+\left(1+y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} \geq \sqrt{2^{2}}=2>1$. This contradicts that a closed chain in $M_{6}^{6}(\theta)$ has a local configuration as in Fig. 4.

Finally, we consider the case $n=7$. Then v_{0} and v_{5} are given by $\left(0, y_{1}, z_{1}\right)$ and $\left(2,1+y_{2}, z_{2}\right)$ respectively, where $y_{1}^{2}+z_{1}^{2}=1$ and $y_{2}^{2}+z_{2}^{2}=1$ (see Fig. 6). The distance between v_{0} and v_{5} is $\sqrt{2^{2}+\left(1+y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$. From the
restriction of the bond angle $\angle v_{5} v_{6} v_{0}$, we have $\left\|v_{0}-v_{5}\right\|=\sqrt{2}$, which implies that the equation $\sqrt{2^{2}+\left(1+y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}=\sqrt{2}$ (see Fig. 7).

Figure 7: A local configuration consisting of β_{0} and β_{6}
However, one can verify that $\sqrt{2^{2}+\left(1+y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} \geq \sqrt{2^{2}}=$ $2>\sqrt{2}$. This contradicts that a closed chain in $M_{7}^{7}(\theta)$ has a local configuration as in Fig. 4.

If the dihedral angles of a rotatable bond $\beta_{i}(1 \leq i \leq n)$ can take any value, the three bond vectors $\boldsymbol{\beta}_{i-1}, \boldsymbol{\beta}_{i}$ and $\boldsymbol{\beta}_{i+1}$ form a local configuration as in Fig. 4, where $\beta_{n}=\beta_{0}$ and $\beta_{n+1}=\beta_{1}$. But, from Lemma 5 , we see that any closed chain in $M_{n}^{n}(\theta)$ does not have the local configuration as in Fig. 4, when $n=5,6,7$.

Next, we assume that $n \geq 8$ and $n \neq 9$. From now on, we construct a rotational closed chain in $M_{n}^{n}(\theta)$ to prove Theorem $2(2)$. We recall Theorem A and B stated in [?].

Lemma 6 ([?]). Let n is a positive integer with $n \geq 4$ and $n \neq 5$.
If n is odd, we have $M_{n}^{n}(\theta) \neq \varnothing$ if and only if $\theta \in\left[\frac{\pi}{n}, \frac{n-2}{n} \pi\right]$.
If n is even, we have $M_{n}^{n}(\theta) \neq \varnothing$ if and only if $\theta \in\left[0, \frac{n-2}{n} \pi\right]$
By Lemma 6, when $\theta=\frac{\pi}{2}$, we obtain $M_{n-4}^{n-4}(\theta) \neq \varnothing$. By attaching the four bonds $\beta_{a}, \beta_{b}, \beta_{c}$ and β_{d} to a closed chain in $M_{n-4}^{n-4}(\theta)$ as in Fig. 8, we get a rotational closed chain in $M_{n}^{n}(\theta)$. In fact, the closed chain has a rotatable bond β_{i}, where $i=a, d$. (see Fig. 8). More precisely, we also need to rename the bonds of the new rotational closed chain so that the rotational closed chain is contained in $M_{n}^{n}(\theta)$.

We give an example of the case $n=8$ as in Fig. 9. Note that the dihedral angles of a rotatable bond β_{i} can take any value, where $i=3,6$ and $\boldsymbol{\beta}_{8}=\boldsymbol{\beta}_{0}$.

Figure 8: A rotational closed chain in $M_{n}^{n}(\theta)$

Figure 9: The case of a rotational closed chain in $M_{8}^{8}(\theta)$

Remark 7. When $n=9$, we cannot apply the above method to determine whether $M_{9}^{9}\left(\frac{\pi}{2}\right)$ has a rotational closed chain. In fact, since, from Theorem A in [?], $M_{5}^{5}(\theta) \neq \varnothing$ if and only if $\theta=\frac{\pi}{5}$ or $\frac{3}{5} \pi$, we have $M_{5}^{5}\left(\frac{\pi}{2}\right)=\varnothing$.

References

[1] E. Hiromi, K. Komatsu, M. Yamauchi, Reversing a polyhedral annulus of even isosceles right triangles by origami-deformation, Scientific and Education Reports of the Faculty of Science and Technology, Kochi University 1 (2018), No.7. (Japanese)
[2] S. Goto, Y. Hemmi, K. Komatsu, J. Yagi, The closed chains with spherical configuration spaces, Hiroshima Math. J. 42 (2012) 253-266.
[3] S. Goto, K. Komatsu, The configuration space of a model for ringed hydrocarbon molecules, Hiroshima Math. J. 42 (2012) 115-126.
[4] S. Goto, K. Komatsu and J. Yagi, The configuration space of almost regular polygons, Hiroshima Math. J. 50 (2020), 185-197.
[5] Y. Kamiyama, A filtration of the configuration space of spatial polygons, Advances and Applications in Discrete Mathematics 22 (2019) 67-74.
[6] Y. Kamiyama, The configuration space of equilateral and equiangular heptagons, JP J. Geom. Topol. 25 (2020), 25-33.
[7] J. O'Hara, The configuration space of equilateral and equiangular hexagons, Osaka J. Math. 50 (2013) 477-489.

[^0]: *Faculty of Science and Technology, Kochi University
 ${ }^{\dagger}$ Department of Social Design Engineering, National Institute of Technology, Kochi College

