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Abstract

The set of closed chains is called the configuration space of the closed
chains. Let Mn

n (θ) be the configuration space of equilateral and equiangu-
lar closed chains with the bond angle θ and n-vertices, and Mn−2

n (θ) the
configuration space of equilateral closed chains with n-vertices whose n−2
bond angles are the same θ except for successive two angles. In this paper,
we study the condition of n for which Mn

n

(
π
2

)
or Mn−2

n

(
cos−1

(
− 1

3

))
has

a rotational closed chain. This results give a geometrical approach for the
study of the topology of Mn

n

(
π
2

)
or Mn−2

n

(
cos−1

(
− 1

3

))
.

1 Introduction and Main Theorem

A closed chain is defined to be a spatial graph in R3 consisting of vertices
v0, v1, . . . , vn−1 and bonds β0, β1, β2, . . . , βn−1, where βi connects vi with vi−1,
and β0 is the edge connecting v0 with vn−1. Let βi denotes the bond vector
vi − vi−1, where i = 1, 2, . . . , n and vn = v0. For a closed chain, we prepare
the following definitions: the bond length for the bond βi is defined to be the
distance between vi and vi−1, a bond angle is defined to be the angle between
two adjacent bonds, the dihedral angle for three bond vectors βi,βi+1 and βi+2

is defined to be the angle between two planes; one is spanned by the two bond
vectors βi and βi+1 and the other is spanned by the two bond vectors βi+1 and
βi+2. In particular, dihedral angles have important roles to determine closed
chains. A closed chain is called a rotational closed chain if it has a rotatable
bond, that is the dihedral angles of the bond can take any value. In this paper,
we impose the following condition for a closed chain :

Assumption 1. We fix θ with 0 ≤ θ < π. Assume that all bond lengths of
a closed chain with n-vertices are 1. The closed chain satisfies either of the
following conditions (1)-(3):

(1) ⟨−βj ,βj+1⟩ = cos θ (j = 0, 1, 2, . . . , n− 1)

(2) ⟨−βj ,βj+1⟩ = cos θ (j = 1, 2, . . . , n− 1)
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(3) ⟨−βj ,βj+1⟩ = cos θ (j = 1, 2, . . . , n− 2)

Here, β0,β1, . . . ,βn−1 denote bond vectors of the closed chain, and βn = β0.

Throughout this paper, we fix three vertices v1, v2 and v3 to v1 = (0, 0, 0),
v2 = (1, 0, 0) and v3 = (1− cos θ, sin θ, 0) respectively. The set of closed chains
is called the configuration space of the closed chains.

Notation. If the closed chain satisfies the condition (1), the closed chain is
equilateral and equiangular with the bond angle θ. In generally, the configuration
space of such closed chains is denoted by Mn

n (θ).
If the closed chain satisfies the condition (2), the closed chain is equilateral

whose n− 1 bond angles are θ except for ∠v1v0vn−1. The configuration space of
such closed chains is denoted by Mn−1

n (θ).
If the closed chain satisfies the condition (3), the closed chain is equilateral

whose n − 2 bond angles are θ except for ∠v1v0vn−1 and ∠v0vn−1vn−2. The
configuration space of such closed chains is denoted by Mn−2

n (θ).

Many researchers have studied the structure of the configuration space con-
sisting of such closed chains. In [?], they considered closed chains in Mn−2

n (θ)
as a mathematical model of cycroalkenes, and showed that the configuration
space Mn−2

n (θ) is homeomorphic to Sn−4, when θ is the standard bond angle,
and n = 5, 6, 7. Here, if n = 5 the standard bond angle is given by 7

12π, and if
n ≥ 6 the standard bond angle is given by cos−1

(
− 1

3

)
. More generally, if the

bond angle θ is sufficiently close to n−2
n π, the configuration space Mn−2

n (θ) is
homeomorphic to Sn−4, for n ≥ 5 ([?, ?]). Here, the bond angle of the n-regular
polygon is n−2

n π. On the other hand, many researchers are also interested in
the study of the topology of Mn

n (θ). When n = 6 and 7, the topological types
of Mn

n (θ) are classified in [?] and [?] respectively, for generic θ.
The study of rotational closed chains in Mn

n (θ) (resp. M
n−2
n (θ)) is to relate

the study of the topology of Mn
n (θ) (resp. Mn−2

n (θ)), since the fundamental
group of Mn

n (θ) (resp. Mn−2
n (θ)) is non-trivial if Mn

n (θ) (resp. Mn−2
n (θ)) has

a rotational closed chain (see [?]). Recently, in [?], we studied reversibility
of a polyhedral annulus of even isosceles right triangles. This result implies
that there is a rotational equilateral and equiangular 2n-closed chain with the
bond angle π

2 , for n ≥ 2. In this paper, we study the condition of n for which
Mn

n

(
π
2

)
or Mn−2

n

(
cos−1

(
− 1

3

))
has a rotational closed chain. Our Theorem is

the following:

Theorem 2. (1) Assume that the fixed bond angle is cos−1(− 1
3 ). When n =

5, 6, 7, Mn−2
n (θ) dose not have rotational closed chains. If n ≥ 8, Mn−2

n (θ)
has a rotational closed chain.

(2) Assume that the fixed bond angle is π
2 . When n = 5, 6, 7, Mn

n (θ) dose not
have rotational closed chains. If n ≥ 8 and n ̸= 9, Mn

n (θ) has a rotational
closed chain.
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2 Proof of Theorem 2 (1)

In this section, we give a proof of Theorem 2 (1). Throughout this section, we
assume θ = cos−1

(
− 1

3

)
. Note that if a straight chain has a rotatable bond βi

(1 ≤ i ≤ n), the three bond vectors βi−1,βi and βi+1 of the straight chain form
a planar local configuration as in Fig. 1, where βn = β0 and βn+1 = β1.

Figure 1: A forbidden local configuration

However, if n = 5, 6, 7, from Lemma 1 (2) stated in [?], any closed chain
in Mn−2

n (θ) does not have local configurations as in Fig. 1. This implies that,
when n = 5, 6, 7, Mn−2

n (θ) dose not have rotational closed chains.
In what follows, for n ≥ 8, we construct a rotational closed chain in Mn−2

n (θ)
to show Theorem 2 (1). We refer to Theorem A and B stated in [?].

Lemma 3 ([?]). Let n is a positive integer with n ≥ 4.
If n is odd, we have Mn−1

n (θ) ̸= ∅ if and only if θ ∈
[
π
n ,

n−2
n π

]
.

If n is even, we have Mn−1
n (θ) ̸= ∅ if and only if θ ∈

[
0, n−2

n π
]

We fix a positive integer n with n ≥ 8. From Lemma 3, when θ = cos−1
(
− 1

3

)
,

we obtainMn−3
n−2 (θ) ̸= ∅. By attaching the parallel stacked two bonds to a closed

chain in Mn−3
n−2 (θ) as in Fig. 2, we get a rotational closed chain in Mn−2

n (θ).
More precisely, we need to rename the bonds of the new rotational closed chain
so that the rotational closed chain is contained in Mn−2

n (θ). We give an example
of the case n = 8 as in Fig. 3. The dihedral angles of a rotatable bond β2 can
take any value.

Remark 4. Fix a positive integer n with n ≥ 5. It is easy to see that for the
case n = 5 we have Mn−3

n−2 ̸= ∅ if and only if θ = π
3 . From Lemma 3, one

can verify that if n is odd and n ≥ 7, we have Mn−3
n−2 (θ) ̸= ∅ if and only if

θ ∈
[

π
n−2 ,

n−4
n−2π

]
and that if n is even and n ≥ 6, we have Mn−3

n−2 (θ) ̸= ∅ if and

only if θ ∈
[
0, n−4

n−2π
]
. For such θ, by using the above method, we can construct

a rotational closed chain in Mn−2
n (θ).
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Figure 2: A rotational closed chain
in Mn−2

n (θ)
Figure 3: The case of a rotational closed
chain in M6

8 (θ)

3 Proof of Theorem 2 (2)

In this section, we prove Theorem 2 (2). Throughout this section, we assume
θ = π

2 . We begin the following Lemma.

Lemma 5. Assume that n = 5, 6, 7. Any closed chain in Mn
n (θ) does not have

the local configurations as in Fig. 4.

Figure 4: A forbidden local configuration

Proof. Assume that a closed chain in Mn
n (θ) has a local configuration as in Fig.

4 for n = 5, 6, 7. Without loss of generality, we can assume that the three bonds
β2, β3 and β4 of the closed chain form the configuration as in Fig. 5 or 6.

Firstly, we consider the case of n = 5. Then v0 and v4 are (0, y, z) and
(2, 1, 0) respectively, where y2 + z2 = 1 (see Fig. 5).

Then the distance between v0 and v4 is given by
√
22 + (1− y)2 + z2. From

∥β0∥ = 1, we have the equation
√
22 + (1− y)2 + z2 = 1. However, we see

4
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Figure 5: A forbidden local configuration when the case of n = 5

√
22 + (1− y)2 + z2 ≥

√
22 = 2 > 1. This contradicts that a closed chain in

M5
5 (θ) has a local configuration as in Fig. 4.
Secondly, we consider the case n = 6. Then v0 and v5 are given by (0, y1, z1)

and (2, 1 + y2, z2) respectively, where y21 + z21 = 1 and y22 + z22 = 1 (see Fig. 6).

Figure 6: A forbidden local configuration when the case of n = 6 and n = 7

So, the distance between v0 and v5 is
√

22 + (1 + y2 − y1)2 + (z2 − z1)2.

Since ∥β0∥ = 1, we see the equation
√
22 + (1 + y2 − y1)2 + (z2 − z1)2 = 1.

But, it is easy to see that
√
22 + (1 + y2 − y1)2 + (z2 − z1)2 ≥

√
22 = 2 > 1.

This contradicts that a closed chain in M6
6 (θ) has a local configuration as in

Fig. 4.
Finally, we consider the case n = 7. Then v0 and v5 are given by (0, y1, z1)

and (2, 1 + y2, z2) respectively, where y21 + z21 = 1 and y22 + z22 = 1 (see Fig. 6).
The distance between v0 and v5 is

√
22 + (1 + y2 − y1)2 + (z2 − z1)2. From the
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restriction of the bond angle ∠v5v6v0, we have ∥v0 − v5∥ =
√
2, which implies

that the equation
√
22 + (1 + y2 − y1)2 + (z2 − z1)2 =

√
2 (see Fig. 7).

Figure 7: A local configuration consisting of β0 and β6

However, one can verify that
√

22 + (1 + y2 − y1)2 + (z2 − z1)2 ≥
√
22 =

2 >
√
2. This contradicts that a closed chain in M7

7 (θ) has a local configuration
as in Fig. 4.

If the dihedral angles of a rotatable bond βi (1 ≤ i ≤ n) can take any value,
the three bond vectors βi−1,βi and βi+1 form a local configuration as in Fig. 4,
where βn = β0 and βn+1 = β1. But, from Lemma 5, we see that any closed chain
in Mn

n (θ) does not have the local configuration as in Fig. 4, when n = 5, 6, 7.
Next, we assume that n ≥ 8 and n ̸= 9. From now on, we construct a

rotational closed chain in Mn
n (θ) to prove Theorem 2 (2). We recall Theorem

A and B stated in [?].

Lemma 6 ([?]). Let n is a positive integer with n ≥ 4 and n ̸= 5.
If n is odd, we have Mn

n (θ) ̸= ∅ if and only if θ ∈
[
π
n ,

n−2
n π

]
.

If n is even, we have Mn
n (θ) ̸= ∅ if and only if θ ∈

[
0, n−2

n π
]

By Lemma 6, when θ = π
2 , we obtain Mn−4

n−4 (θ) ̸= ∅. By attaching the four

bonds βa, βb, βc and βd to a closed chain in Mn−4
n−4 (θ) as in Fig. 8, we get a

rotational closed chain in Mn
n (θ). In fact, the closed chain has a rotatable bond

βi, where i = a, d. (see Fig. 8). More precisely, we also need to rename the
bonds of the new rotational closed chain so that the rotational closed chain is
contained in Mn

n (θ).
We give an example of the case n = 8 as in Fig. 9. Note that the dihedral

angles of a rotatable bond βi can take any value, where i = 3, 6 and β8 = β0.
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Figure 8: A rotational closed chain
in Mn

n (θ)
Figure 9: The case of a rotational closed
chain in M8

8 (θ)

Remark 7. When n = 9, we cannot apply the above method to determine
whether M9

9

(
π
2

)
has a rotational closed chain. In fact, since, from Theorem A

in [?], M5
5 (θ) ̸= ∅ if and only if θ = π

5 or 3
5π, we have M5

5

(
π
2

)
= ∅.
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