On the existence of a rotational closed chain

Kazushi Komatsu * Jun Yagi [†]

Abstract

The set of closed chains is called the configuration space of the closed chains. Let $M_n^n(\theta)$ be the configuration space of equilateral and equiangular closed chains with the bond angle θ and *n*-vertices, and $M_n^{n-2}(\theta)$ the configuration space of equilateral closed chains with *n*-vertices whose n-2 bond angles are the same θ except for successive two angles. In this paper, we study the condition of *n* for which $M_n^n\left(\frac{\pi}{2}\right)$ or $M_n^{n-2}\left(\cos^{-1}\left(-\frac{1}{3}\right)\right)$ has a rotational closed chain. This results give a geometrical approach for the study of the topology of $M_n^n\left(\frac{\pi}{2}\right)$ or $M_n^{n-2}\left(\cos^{-1}\left(-\frac{1}{3}\right)\right)$.

1 Introduction and Main Theorem

A closed chain is defined to be a spatial graph in \mathbb{R}^3 consisting of vertices $v_0, v_1, \ldots, v_{n-1}$ and bonds $\beta_0, \beta_1, \beta_2, \ldots, \beta_{n-1}$, where β_i connects v_i with v_{i-1} , and β_0 is the edge connecting v_0 with v_{n-1} . Let β_i denotes the bond vector $v_i - v_{i-1}$, where $i = 1, 2, \ldots, n$ and $v_n = v_0$. For a closed chain, we prepare the following definitions: the bond length for the bond β_i is defined to be the distance between v_i and v_{i-1} , a bond angle is defined to be the angle between two adjacent bonds, the dihedral angle for three bond vectors β_i, β_{i+1} and β_{i+2} is defined to be the angle between two planes; one is spanned by the two bond vectors β_{i+1} and β_{i+2} . In particular, dihedral angles have important roles to determine closed chains. A closed chain is called a rotational closed chain if it has a rotatable bond, that is the dihedral angles of the bond can take any value. In this paper, we impose the following condition for a closed chain :

Assumption 1. We fix θ with $0 \le \theta < \pi$. Assume that all bond lengths of a closed chain with n-vertices are 1. The closed chain satisfies either of the following conditions (1)-(3):

- (1) $\langle -\boldsymbol{\beta}_{i}, \boldsymbol{\beta}_{i+1} \rangle = \cos \theta$ $(j = 0, 1, 2, \dots, n-1)$
- (2) $\langle -\boldsymbol{\beta}_j, \boldsymbol{\beta}_{j+1} \rangle = \cos \theta \quad (j = 1, 2, \dots, n-1)$

^{*}Faculty of Science and Technology, Kochi University

[†]Department of Social Design Engineering, National Institute of Technology, Kochi College

(3) $\langle -\beta_j, \beta_{j+1} \rangle = \cos \theta$ $(j = 1, 2, \dots, n-2)$

Here, $\beta_0, \beta_1, \ldots, \beta_{n-1}$ denote bond vectors of the closed chain, and $\beta_n = \beta_0$.

Throughout this paper, we fix three vertices v_1 , v_2 and v_3 to $v_1 = (0, 0, 0)$, $v_2 = (1, 0, 0)$ and $v_3 = (1 - \cos \theta, \sin \theta, 0)$ respectively. The set of closed chains is called the *configuration space* of the closed chains.

Notation. If the closed chain satisfies the condition (1), the closed chain is equilateral and equiangular with the bond angle θ . In generally, the configuration space of such closed chains is denoted by $M_n^n(\theta)$.

If the closed chain satisfies the condition (2), the closed chain is equilateral whose n-1 bond angles are θ except for $\angle v_1 v_0 v_{n-1}$. The configuration space of such closed chains is denoted by $M_n^{n-1}(\theta)$.

If the closed chain satisfies the condition (3), the closed chain is equilateral whose n-2 bond angles are θ except for $\angle v_1 v_0 v_{n-1}$ and $\angle v_0 v_{n-1} v_{n-2}$. The configuration space of such closed chains is denoted by $M_n^{n-2}(\theta)$.

Many researchers have studied the structure of the configuration space consisting of such closed chains. In [?], they considered closed chains in $M_n^{n-2}(\theta)$ as a mathematical model of cycroalkenes, and showed that the configuration space $M_n^{n-2}(\theta)$ is homeomorphic to S^{n-4} , when θ is the standard bond angle, and n = 5, 6, 7. Here, if n = 5 the standard bond angle is given by $\frac{7}{12}\pi$, and if $n \ge 6$ the standard bond angle is given by $\cos^{-1}\left(-\frac{1}{3}\right)$. More generally, if the bond angle θ is sufficiently close to $\frac{n-2}{n}\pi$, the configuration space $M_n^{n-2}(\theta)$ is homeomorphic to S^{n-4} , for $n \ge 5$ ([?, ?]). Here, the bond angle of the *n*-regular polygon is $\frac{n-2}{n}\pi$. On the other hand, many researchers are also interested in the study of the topology of $M_n^n(\theta)$. When n = 6 and 7, the topological types of $M_n^n(\theta)$ are classified in [?] and [?] respectively, for generic θ .

The study of rotational closed chains in $M_n^n(\theta)$ (resp. $M_n^{n-2}(\theta)$) is to relate the study of the topology of $M_n^n(\theta)$ (resp. $M_n^{n-2}(\theta)$), since the fundamental group of $M_n^n(\theta)$ (resp. $M_n^{n-2}(\theta)$) is non-trivial if $M_n^n(\theta)$ (resp. $M_n^{n-2}(\theta)$) has a rotational closed chain (see [?]). Recently, in [?], we studied reversibility of a polyhedral annulus of even isosceles right triangles. This result implies that there is a rotational equilateral and equiangular 2n-closed chain with the bond angle $\frac{\pi}{2}$, for $n \geq 2$. In this paper, we study the condition of n for which $M_n^n(\frac{\pi}{2})$ or $M_n^{n-2}(\cos^{-1}(-\frac{1}{3}))$ has a rotational closed chain. Our Theorem is the following:

- **Theorem 2.** (1) Assume that the fixed bond angle is $\cos^{-1}(-\frac{1}{3})$. When $n = 5, 6, 7, M_n^{n-2}(\theta)$ dose not have rotational closed chains. If $n \ge 8, M_n^{n-2}(\theta)$ has a rotational closed chain.
- (2) Assume that the fixed bond angle is $\frac{\pi}{2}$. When $n = 5, 6, 7, M_n^n(\theta)$ dose not have rotational closed chains. If $n \ge 8$ and $n \ne 9, M_n^n(\theta)$ has a rotational closed chain.

2 Proof of Theorem 2(1)

In this section, we give a proof of Theorem 2 (1). Throughout this section, we assume $\theta = \cos^{-1}\left(-\frac{1}{3}\right)$. Note that if a straight chain has a rotatable bond β_i $(1 \le i \le n)$, the three bond vectors $\boldsymbol{\beta}_{i-1}, \boldsymbol{\beta}_i$ and $\boldsymbol{\beta}_{i+1}$ of the straight chain form a planar local configuration as in Fig. 1, where $\beta_n = \beta_0$ and $\beta_{n+1} = \beta_1$.

Figure 1: A forbidden local configuration

However, if n = 5, 6, 7, from Lemma 1 (2) stated in [?], any closed chain in $M_n^{n-2}(\theta)$ does not have local configurations as in Fig. 1. This implies that, when $n = 5, 6, 7, M_n^{n-2}(\theta)$ dose not have rotational closed chains.

In what follows, for $n \ge 8$, we construct a rotational closed chain in $M_n^{n-2}(\theta)$ to show Theorem 2 (1). We refer to Theorem A and B stated in [?].

Lemma 3 ([?]). Let n is a positive integer with $n \ge 4$.

If n is odd, we have $M_n^{n-1}(\theta) \neq \emptyset$ if and only if $\theta \in \left[\frac{\pi}{n}, \frac{n-2}{n}\pi\right]$. If n is even, we have $M_n^{n-1}(\theta) \neq \emptyset$ if and only if $\theta \in \left[0, \frac{n-2}{n}\pi\right]$

We fix a positive integer n with $n \ge 8$. From Lemma 3, when $\theta = \cos^{-1}\left(-\frac{1}{3}\right)$, we obtain $M_{n-2}^{n-3}(\theta) \ne \emptyset$. By attaching the parallel stacked two bonds to a closed chain in $M_{n-2}^{n-3}(\theta)$ as in Fig. 2, we get a rotational closed chain in $M_n^{n-2}(\theta)$. More precisely, we need to rename the bonds of the new rotational closed chain so that the rotational closed chain is contained in $M_n^{n-2}(\theta)$. We give an example of the case n = 8 as in Fig. 3. The dihedral angles of a rotatable bond β_2 can take any value.

Remark 4. Fix a positive integer n with $n \ge 5$. It is easy to see that for the case n = 5 we have $M_{n-2}^{n-3} \ne \emptyset$ if and only if $\theta = \frac{\pi}{3}$. From Lemma 3, one can verify that if n is odd and $n \ge 7$, we have $M_{n-2}^{n-3}(\theta) \ne \emptyset$ if and only if $\theta \in \left[\frac{\pi}{n-2}, \frac{n-4}{n-2}\pi\right]$ and that if n is even and $n \ge 6$, we have $M_{n-2}^{n-3}(\theta) \ne \emptyset$ if and only if $\theta \in \left[0, \frac{n-4}{n-2}\pi\right]$. For such θ , by using the above method, we can construct a rotational closed chain in $M_n^{n-2}(\theta)$.

Figure 2: A rotational closed chain in $M_n^{n-2}(\theta)$

Figure 3: The case of a rotational closed chain in $M_8^6(\theta)$

3 Proof of Theorem 2 (2)

In this section, we prove Theorem 2 (2). Throughout this section, we assume $\theta = \frac{\pi}{2}$. We begin the following Lemma.

Lemma 5. Assume that n = 5, 6, 7. Any closed chain in $M_n^n(\theta)$ does not have the local configurations as in Fig. 4.

Figure 4: A forbidden local configuration

Proof. Assume that a closed chain in $M_n^n(\theta)$ has a local configuration as in Fig. 4 for n = 5, 6, 7. Without loss of generality, we can assume that the three bonds β_2, β_3 and β_4 of the closed chain form the configuration as in Fig. 5 or 6.

Firstly, we consider the case of n = 5. Then v_0 and v_4 are (0, y, z) and (2, 1, 0) respectively, where $y^2 + z^2 = 1$ (see Fig. 5).

Then the distance between v_0 and v_4 is given by $\sqrt{2^2 + (1-y)^2 + z^2}$. From $\|\beta_0\| = 1$, we have the equation $\sqrt{2^2 + (1-y)^2 + z^2} = 1$. However, we see

Figure 5: A forbidden local configuration when the case of n = 5

 $\sqrt{2^2 + (1-y)^2 + z^2} \ge \sqrt{2^2} = 2 > 1$. This contradicts that a closed chain in $M_5^5(\theta)$ has a local configuration as in Fig. 4.

Secondly, we consider the case n = 6. Then v_0 and v_5 are given by $(0, y_1, z_1)$ and $(2, 1 + y_2, z_2)$ respectively, where $y_1^2 + z_1^2 = 1$ and $y_2^2 + z_2^2 = 1$ (see Fig. 6).

Figure 6: A forbidden local configuration when the case of n = 6 and n = 7

So, the distance between v_0 and v_5 is $\sqrt{2^2 + (1 + y_2 - y_1)^2 + (z_2 - z_1)^2}$. Since $\|\beta_0\| = 1$, we see the equation $\sqrt{2^2 + (1 + y_2 - y_1)^2 + (z_2 - z_1)^2} = 1$. But, it is easy to see that $\sqrt{2^2 + (1 + y_2 - y_1)^2 + (z_2 - z_1)^2} \ge \sqrt{2^2} = 2 > 1$. This contradicts that a closed chain in $M_6^6(\theta)$ has a local configuration as in Fig. 4.

Finally, we consider the case n = 7. Then v_0 and v_5 are given by $(0, y_1, z_1)$ and $(2, 1 + y_2, z_2)$ respectively, where $y_1^2 + z_1^2 = 1$ and $y_2^2 + z_2^2 = 1$ (see Fig. 6). The distance between v_0 and v_5 is $\sqrt{2^2 + (1 + y_2 - y_1)^2 + (z_2 - z_1)^2}$. From the restriction of the bond angle $\angle v_5 v_6 v_0$, we have $||v_0 - v_5|| = \sqrt{2}$, which implies that the equation $\sqrt{2^2 + (1 + y_2 - y_1)^2 + (z_2 - z_1)^2} = \sqrt{2}$ (see Fig. 7).

Figure 7: A local configuration consisting of β_0 and β_6

However, one can verify that $\sqrt{2^2 + (1 + y_2 - y_1)^2 + (z_2 - z_1)^2} \ge \sqrt{2^2} = 2 > \sqrt{2}$. This contradicts that a closed chain in $M_7^7(\theta)$ has a local configuration as in Fig. 4.

If the dihedral angles of a rotatable bond β_i $(1 \le i \le n)$ can take any value, the three bond vectors β_{i-1}, β_i and β_{i+1} form a local configuration as in Fig. 4, where $\beta_n = \beta_0$ and $\beta_{n+1} = \beta_1$. But, from Lemma 5, we see that any closed chain in $M_n^n(\theta)$ does not have the local configuration as in Fig. 4, when n = 5, 6, 7.

Next, we assume that $n \geq 8$ and $n \neq 9$. From now on, we construct a rotational closed chain in $M_n^n(\theta)$ to prove Theorem 2 (2). We recall Theorem A and B stated in [?].

Lemma 6 ([?]). Let n is a positive integer with $n \ge 4$ and $n \ne 5$. If n is odd, we have $M_n^n(\theta) \ne \emptyset$ if and only if $\theta \in [\frac{\pi}{n}, \frac{n-2}{n}\pi]$. If n is even, we have $M_n^n(\theta) \ne \emptyset$ if and only if $\theta \in [0, \frac{n-2}{n}\pi]$

By Lemma 6, when $\theta = \frac{\pi}{2}$, we obtain $M_{n-4}^{n-4}(\theta) \neq \emptyset$. By attaching the four bonds β_a , β_b , β_c and β_d to a closed chain in $M_{n-4}^{n-4}(\theta)$ as in Fig. 8, we get a rotational closed chain in $M_n^n(\theta)$. In fact, the closed chain has a rotatable bond β_i , where i = a, d. (see Fig. 8). More precisely, we also need to rename the bonds of the new rotational closed chain so that the rotational closed chain is contained in $M_n^n(\theta)$.

We give an example of the case n = 8 as in Fig. 9. Note that the dihedral angles of a rotatable bond β_i can take any value, where i = 3, 6 and $\beta_8 = \beta_0$.

Figure 8: A rotational closed chain in $M_n^n(\theta)$

Figure 9: The case of a rotational closed chain in $M_8^8(\theta)$

Remark 7. When n = 9, we cannot apply the above method to determine whether $M_9^9\left(\frac{\pi}{2}\right)$ has a rotational closed chain. In fact, since, from Theorem A in [?], $M_5^5(\theta) \neq \emptyset$ if and only if $\theta = \frac{\pi}{5}$ or $\frac{3}{5}\pi$, we have $M_5^5\left(\frac{\pi}{2}\right) = \emptyset$.

References

- E. Hiromi, K. Komatsu, M. Yamauchi, Reversing a polyhedral annulus of even isosceles right triangles by origami-deformation, Scientific and Education Reports of the Faculty of Science and Technology, Kochi University 1 (2018), No.7. (Japanese)
- [2] S. Goto, Y. Hemmi, K. Komatsu, J. Yagi, The closed chains with spherical configuration spaces, Hiroshima Math. J. 42 (2012) 253–266.
- [3] S. Goto, K. Komatsu, The configuration space of a model for ringed hydrocarbon molecules, Hiroshima Math. J. 42 (2012) 115–126.
- [4] S. Goto, K. Komatsu and J. Yagi, The configuration space of almost regular polygons, Hiroshima Math. J. 50 (2020), 185-197.
- [5] Y. Kamiyama, A filtration of the configuration space of spatial polygons, Advances and Applications in Discrete Mathematics **22** (2019) 67–74.
- [6] Y. Kamiyama, The configuration space of equilateral and equiangular heptagons, JP J. Geom. Topol. 25 (2020), 25–33.
- [7] J. O'Hara, The configuration space of equilateral and equiangular hexagons, Osaka J. Math. 50 (2013) 477–489.