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Enrichment is an increasingly serious trend in natural ecosystems. A theoretical model of a predator^
prey system with a natural assumption of satiation in predation predicts that enrichment causes the
populations to £uctuate to stochastic extinction. However, this `paradox of enrichment' does not always
occur in experimental and natural communities. Here we present a theoretical model that describes a
novel mechanism for resolving the paradox in the case of a predator with optimal selective feeding.
Speci¢cally, a less pro¢table but edible (thus `unpalatable') prey species sharply reduces the amplitude of
population oscillations and ¢rmly prevents the minimum abundances of species from falling below
certain values. The presence of such an unpalatable prey thus guarantees the robustness of the system
against enrichment.
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1. INTRODUCTION

A predator^prey model incorporating a natural assump-
tion of satiation in predation has led to a paradoxical
prediction (Rosenzweig 1971; Gilpin 1972; May 1972): a
su¤cient enrichment of the prey leads to the risk of
destruction of the system. Such an enrichment ¢rst
destabilizes a stable equilibrium point, resulting in a limit
cycle. The amplitudes of the population oscillations will
grow rapidly and, thus, the minimum population
abundances will approach zero as enrichment is further
increased, so that stochastic e¡ects could lead to extinction
(smaller populations are more prone to such an extinction).
Thus, Rosenzweig (1971) warned against enriching natural
ecosystems in order to increase their food yield. Enrich-
ment (often referred to as eutrophication) is increasingly
widespread and serious in natural ecosystems because of
the increased level of human activities.

In spite of the astonishing prediction of this classic
model, the paradox has seldom been tested empirically.
In one-predator^one-prey systems, there have been
several experiments in which enrichment caused popula-
tion oscillations (Hu¡aker et al. 1963; Luckinbill 1974;
Bohannan & Lenski 1997). In contrast to these examples,
McCauley and Murdoch (1990) showed by using a
Daphnia^algal system that enrichment did not change the
amplitude of the population oscillation, neither in a ¢eld
nor an experimental system. Furthermore, Kirk (1998)
recently showed with laboratory microcosms containing
planktonic rotifer predators and phytoplankton prey that
enrichment can stabilize the population oscillations
through autotoxins produced by the predator.

These empirical studies imply that it is necessary to
apply additional assumptions to the theoretical model.

For the empirical work by McCauley and Murdoch
(1990), the presence of inedible prey is proposed as a
plausible mechanism to resolve the discrepancy between
theory and observation, in which the prey acts as a
nutrient s̀ponge' (Kretzschmar et al. 1993; Murdoch et al.
1998). The experiment by Kirk (1998) can be explained
by the addition of density-dependent predator mortality
to the classic model (Gilpin 1975), because this factor
results in stabilizing an unstable system. Other models
incorporating an assumption that the attack rate of the
predator depends on the ratio of prey to predator
abundances, claim that enrichment is not predicted to be
destabilizing (Arditi & Ginzburg 1989). These `ratio-
dependent' models, however, are less widely accepted
than `prey-dependent' models in which the attack rate
depends on the instantaneous density of prey (Oksanen et
al. 1992; Diehl et al. 1993; Abrams 1994; Gleeson 1994).

In this paper, we theoretically propose a new
mechanism that resolves the paradox of enrichment, using
a one-predator^two-prey model in which the predator
shows optimal selective feeding, which is a well-known
behaviour of many predators (Werner & Hall 1974; Krebs
et al. 1977; DeMott 1989). Several studies have shown that
switching between prey by predators can stabilize
predator^prey systems (Murdoch 1969; Murdoch &
Oaten 1975; Tansky 1978; Teramoto et al. 1979). However,
none of these studies considered cases in which the equili-
brium was unstable and the system followed a limit cycle.
The model applied here is di¡erent from the previous
models with switching predators in that (i) we deal with
non-equilibrium dynamics of limit cycles, and (ii) the
predator displays the optimal selective feeding strategy
which maximizes energy input, dependent on the pro¢t-
abilities and the abundances of its prey (Charnov 1976).We
assume that enrichment of a system increases only the prey
carrying capacity, following the original model in which
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the paradox of enrichment was discussed (Rosenzweig
1971). It is well-known that the stability of an equilibrium
point depends on the carrying capacity, but not on the
intrinsic growth rate which may a¡ect the equilibrium
abundance.

2. MODEL

Consider a system consisting of two prey species
populations (X1 and X2) and one predator population
�Y�, the dynamics of which is de¢ned by the following set
of equations:

dX1

dt
� "1 1ÿ X1

K1
ÿ �X2

K1

� �
ÿ r1Y

� �
X1, (1a)

dX2

dt
� "2 1ÿ �X1

K2
ÿ X2

K2

� �
ÿ r2Y

� �
X2, (1b)

dY
dt
� ÿ"3 � k(g1r1X1 � g2r2X2)
� 	

Y , (1c)

where ri � piai/(1�
P

j pjhjajXj).
The " and K parameters are the rates of growth of the

two prey when scarce ("3 is the predator death rate) and
the carrying capacities of the prey in the environment,
respectively. The two prey species compete with each
other, as described by a Lotka^Volterra competitive
system with interspeci¢c competition coe¤cients � and �.
The energy value of an individual of prey species i is gi.
The conversion e¤ciency of consumed prey into the
predator's reproduction rate is k. The term ri corresponds
to predation, in which the encounter e¤ciency with prey
species i is ai; the handling time for prey species i is hi;
pi is the probability that the predator captures an individual
of prey species i when encountered. We assume here that
the predation is basically described by a type 2 functional
response (concave downwards), because we are interested
in the dynamics of an unstable system and the type 2 is
the simplest functional response that produces a popula-
tion oscillation.

Assume that the predator is an optimal forager that
chooses the value for each of the probabilities pi
(04 pi 4 1; i � 1, 2� in order to maximize the energy
input by predation g1r1X1 � g2r2X2. The two prey species
are assumed to be ranked in their pro¢tability as
g1=h14g2=h2 (i.e. prey X1 is more pro¢table for the
predator than prey X2) so that p1 should always be 1
(Charnov 1976). We also assume that the more pro¢table
prey X1 is superior in competition to the less pro¢table
prey (�5�), because otherwise the two prey species
cannot coexist (Takeuchi 1996). We further assume that
the more pro¢table prey X1 yields enough nutrition to
support a persisting predator population in the absence
of the less pro¢table prey, or mathematically, that

g1
h1
4
"3
k
. (2)

This inequality is derived from the condition that there
exists a positive range of X1 such that dY /dt40 when
X2 � 0 and Y40 in equation (1c).

It is known (Charnov 1976) that the predation rate
g1r1X1 � g2r2X2 is maximized when p2 � 0 (or p2 � 1) if
the abundance of the more pro¢table prey X1 is greater
(or smaller) than a critical abundance X̂1, where
X̂1 � g2/�a1h1h2(g1/h1 ÿg2=h2)�.

Noting that X̂1 is an increasing function of the
pro¢tability g2/h2 of the less pro¢table prey X2, let the
prey be classi¢ed according to the range of its pro¢tability
g2/h2, i.e. let the value of X̂1 be classi¢ed into three
categories: inedible prey (X̂15Xmin

1 ), unpalatable prey
(Xmin

1 5X̂15X*
1 ), and palatable prey (X*

15X̂1), where
Xmin

1 is the minimum abundance of X1 in its oscillation
when X2 � 0, and X*

1 ( � "3=�a1(kg1 ÿ "3h1)�) is the
equilibrium value of X1 when X2 � 0, obtained from
dY/dt � 0 in equation (1c) with Y40. Note that Xmin

1
and X*

1 do not depend on g2 or h2.
Setting X̂1 � X*

1 , we obtain the critical pro¢tability of
X2, "3/k, below which (i.e. when g2/h25"3=k) the less
pro¢table prey is classi¢ed as unpalatable and above
which (when g2/h24"3/k) it is classi¢ed as palatable. Note
from inequality (2) that an unpalatable or inedible prey
cannot, while a palatable prey can, yield enough nutrition
to support the predator population in the absence of the
alternative prey.

3. RESULTS

We numerically calculated the dynamics of three
species for di¡erent pro¢tability of the less pro¢table prey
and summarize the results in ¢gure 1. We ¢rst observe
that in the absence of the less pro¢table prey X2, popula-
tion oscillations occur with su¤cient enrichment, i.e. for
large values of K (the left-most panels in ¢gure 1a,b). The
presence of X2 always reduces the amplitude of oscillation
(the other panels in ¢gure 1a,b). The degree of this
stabilizing e¡ect depends on the pro¢tability g2/h2 of the
less pro¢table prey X2 (¢gure 1a,b,d). The stabilizing
e¡ect is the strongest when the less pro¢table prey is
unpalatable. Within the range of unpalatable prey, the
stabilizing e¡ect becomes stronger as the pro¢tability
g2/h2 of the less pro¢table prey X2 increases, and the
oscillation is sharply suppressed (almost to a negligible
level) at the critical pro¢tability of the prey ("3/k),
beyond which the amplitude of the oscillation discontin-
uously increases (¢gure 1d).

In the presence of inedible prey X2, the e¡ective
carrying capacity of X1 is reduced by competition
(Kretzschmar et al. 1993), resulting in reduction in the
amplitude of the oscillation. In the presence of unpala-
table prey X2, observe a vertical drop of the orbit in the
X1^Y space (¢gure 1b). A close-up view of the drop
(¢gure 1c) indicates the following: an expanded popula-
tion Y causes the reduction of X1, but when X1 falls
below X̂1, the predator begins to eat not only X1 but also
X2, which causes an immediate recovery of X1, while
decreasing Y itself (because X̂15X*

1 , where dY /dt50, as
is clear from equation (1c)). As the pro¢tability g2/h2 of
the unpalatable prey X2 increases, the X̂1 value and thus
the realized minimum X1 value increase, which causes
the minimum Y to increase, resulting in the reduction in
the amplitude of the oscillation (¢gure 1d).
In the case of palatable prey X2, its population level is

more heavily suppressed both by predation because of its
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relatively high pro¢tability and by competition with the
superior competitor X1. The competitive in£uence of X2

on X1 is thus reduced, resulting in a larger value of the
maximum X1 as shown in ¢gure 1a. The maximum Y is
enhanced, not only by the large value of the maximum
X1, but also by a relatively high pro¢tability of X2, which
subsequently causes the small values of the minimum X1

and Y. Thus, the amplitude of the oscillation in the case
of palatable prey is larger than that in the case of inedible
prey (¢gure 1d ).
Next, we examined the e¡ects of increasing enrich-

ment, or the carrying capacity K, on the oscillation

amplitude and the minimum abundance of prey X1 under
the presence of di¡erent categories of prey X2. In the case
of unpalatable prey, the minimum abundances of all the
species populations are kept considerably higher than
zero in the face of increasing enrichment, while they
approach zero in the other cases (¢gure 2a). This means
that an unpalatable prey prevents the abundances of all
the species populations from becoming so low that
stochastic £uctuation may cause them to go extinct.
Although the amplitude of the population oscillation
increases with an increasing enrichment in the case of any
category of the less pro¢table prey, the increase is much
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Figure 1. Dynamics of the predator^prey system described by equations (1) with the less pro¢table prey of di¡erent degrees of
pro¢tability. We solved this numerically by the Runge^Kutta method using the following values: "1 � 0:5,"2 � 0:25,"3 � 0:25,
� � 0:1,� � 0:4,a1 � a2 � 1, k � 1,g1 � g2 � 0:5,h1 � 1,K1 � K2 � 4. We change the pro¢tability g2/h2 of the less pro¢table prey
X2 by changing the h2 value. (a) The temporal change in abundances of the more pro¢table prey (X1, thin line), less pro¢table
prey (X2, thick line) and predator (Y , dotted line), and (b) the dynamics in the X1^Y space of the system. Panels in (a) and (b) in
the same column depict the same case. Numbers in parentheses in (a) express the pro¢tability of the less pro¢table prey. Arrows
in (b) express the values of X̂1. In the left-most panels of (a) and (b) the less pro¢table prey X2 is absent, the initial values are
�X1,X2,Y� � (2, 0, 1) and the equilibrium point in the X1^Y space is (1, 0.75). In the other panels, the initial values are (2, 2, 1)
and the equilibrium point is (1, 0.66). (c) A close-up view of the vertical drop in the X1^Y space in the case of the unpalatable
prey X2 with pro¢tability g2/h2 � 0:24. (d) Relationship between the pro¢tability g2/h2 of the less pro¢table prey X2 and the
amplitude of the oscillation, de¢ned by the di¡erence between the maximum and minimum abundances of the more pro¢table
prey X1. The broken line represents the amplitude of the oscillation in the absence of the less pro¢table prey X2. The pro¢tability
g1/h1 of the more pro¢table prey X1 is 0.5.



slower in the case of unpalatable prey (¢gure 2b). Thus,
unpalatable prey most e¡ectively prevents the system
from oscillating to population extinction in the face of
increasing enrichment, resolving the puzzle over the
paradox of enrichment.

4. DISCUSSION

Regarding the e¡ect of enrichment on the parameters,
we followed a historical theory that enrichment of the
prey caused only a change in the carrying capacity,
however, one might imagine that enrichment can cause
an increase in the intrinsic growth rate ("1 and "2), or,
further, both in the intrinsic growth rate and the carrying
capacity. First, we con¢rmed by numerical simulation that
an increase in the intrinsic growth rate had little e¡ect on
the amplitude of the population oscillation, in contrast to
an increase in the carrying capacity, and caused the cycle
to move upward in the X1 ^Y space (which corresponded
to an increase in the predator equilibrium abundance).
Therefore, if enrichment increased only the intrinsic
growth rate, the problem of the `paradox of enrichment'
would not exist in the ¢rst place. This is the reason why
we con¢ned our study to e¡ects of the carrying capacity
on the dynamics of the system.

Our model with an optimally foraging predator which
maximized its energy intake, revealed that the stabilizing
e¡ect of the alternative (less pro¢table) prey species was
strongest when it yielded insu¤cient nutrients on its own
to maintain the predator population but its pro¢tability
was relatively high (i.e. unpalatable prey). The relation-
ship between the pro¢tability of the less pro¢table prey

and the amplitude of the population oscillation in
¢gure 1d showed a discontinuous change between the
categories of unpalatable and palatable prey, which is a
new result in the stability analyses of communities. This
discontinuous change implies the possibility that a popu-
lation oscillation with small amplitude can explosively
increase because of a small change in the pro¢tability of
the less pro¢table prey; for example, in the handling time
in response to a change in temperature or in the energy
value of individual prey in response to enrichment of the
system. The reverse scenario that the amplitude is
suddenly reduced is also possible. These possibilities could
occur when the pro¢tability of the less pro¢table prey
takes a value near the critical pro¢tability "3/k.

Our assumption of optimal behaviour by the predator
was shown to prevent the paradoxical prediction
regarding enrichment: in the presence of unpalatable
prey, although the amplitude of the population oscillation
increased somewhat with enrichment, the minimum
abundance of the more pro¢table prey species was kept
well above zero. Thus, the minimum abundance of the
predator was subsequently kept considerably higher than
zero, so that the predator^prey system was robust against
any magnitude of enrichment. There have been theor-
etical works with other assumptions of adaptive behaviour
by predators and prey which can stabilize population
oscillations, although most of these works dealt with only
the stability of the equilibrium points. Selective feeding
by predators, in which they fed more intensively on the
more abundant prey species, was shown to broaden the
condition under which the equilibrium point was stable
(Murdoch 1969; Murdoch & Oaten 1975; Tansky 1978;
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Figure 2. E¡ects of enrichment in the presence of the less pro¢table prey with di¡erent pro¢tability values. Numbers in
parentheses express the pro¢tability g2/h2 of the less pro¢table prey X2. The degree of enrichment is represented by the magnitude
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(b) Relationship between enrichment and the amplitude of the oscillation, de¢ned as in ¢gure 1d.



Teramoto et al. 1979). Antipredator behaviours of prey can
also stabilize population oscillations in a system with
heterogeneity, such as refuges in which the predation risk
is low but the prey has some disadvantage (Ruxton 1995;
Kr�ivan 1998). In conclusion, adaptive behaviours of
predator and prey have a general tendency to make it
harder for predators to overexploit a speci¢c prey and so
can have stabilizing e¡ects.

Most real communities are more complex than the
community analysed here. McCann et al. (1998) recently
showed with communities of up to four species that inter-
actions of weak to intermediate strength between species
were important in promoting community persistence and
stability. The presence of unpalatable prey in our model
can be regarded as a cause of such a link, because the
unpalatable prey is not always eaten by the predator.
Although it will be di¤cult to analyse communities incor-
porating many (i.e. more than three) species and more
realistic links, such as with adaptive behaviours of all
species, it is an important and open problem to be solved
step by step.
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